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1 Introduction

An enormous research effort into parallel algorithms, hardware, and software has already

been undertaken motivated by the need for more computing power within many scientific

applications. Parallel machines, such as hypercubes, have been commercially available for

approximately five years with some second generation machines currently on the market.

Now is an appropriate time to ask whether hypercubes can in fact supply the additional

computing power necessary to solve these problems.

To evaluate the potential performance of hypercubes on realistic computational fluid

dynamics (CFD) problems, we implemented an existing fluid dynamics code on three hy-

percube machines (a 32 node iPSC/1, a 16 node iPSC/2, and a 512 node NCUBE/ten).

The fluid code was Antony Jameson's widely used FLO52 [1], which solves the two-

dimensional steady Euler equations describing flow around an airfoil.

FLO52 is representative of a large class of algorithms and codes for CFD problems. Its

main computational kernel is a multi-stage Runge-Kutta integrator accelerated by a multi-

grid procedure. In this paper, we give a description of FLO52, its hypercube mapping, and

the code modifications necessary to improve machine utilization. Additionally, a perfor-

mance evaluation is made based on runs from three machines (the 16 node Intel iPSC/2

located at Stanford University, the 512 node NCUBE/ten located at Caltech, and the Cray

X-MP/48 located at NASA/Ames Research Center) and on a mathematical model of the

execution time. The model defines the execution time as a function of several machine and

algorithm parameters and accurately predicts the actual run times obtained. It is used to

predict the performance of the code in interesting but not yet physically realizable regions

of the parameter space.

2 The Euler Code FLO52

An already existing flow code, FLO52, written by Antony Jameson [1] was chosen to study

the performance of hypercube machines. FLO52 is widely used in research and industrial

applications throughout the world. It produces good results for problems in its domain

of application (steady inviscid flow around a two-dimensional body), giving solutions in

which shocks are captured with no oscillations. It converges rapidly to steady state and

executes rapidly on conventional supercomputer (uniprocessor) architectures. In addition

to its widespread use, FLO52 was chosen for study because of the multigrid acceleration

used. In particular, the efficient parallelization of the algorithm's grid hierarchy (including

grids with a small number of grids points), is non-trivial. "

To study the steady Euler equations of inviscid flow, we begin with the unsteady time-

dependent equations. The time-dependent two-dimensional Euler equations in conserva-

tion form may be written in integral form as

6-/ w + n. = 0. (1)

This integral relation expresses conservation of mass, momentum, and energy. It is to hold

for any region in the flow domain; n is the outward pointing normal on the boundary of the

region. The variable w is the vector of unkllowns

w = (p,p_,pv,pe) T, (:2)
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where p is density, u and v are velocity components directed along the x and y-axes,

respectively, and E is total energy per unit mass. The function F is given by F(w) =

(E(w),F(w))where

E(w) = (pu,pu 2 + p, puv, puH) T

F(w) = (pv,puv, pv 2 + p, pvH) T.

Here p is pressure and H is enthalpy; these are defined by

P = (7 -- 1)p[E- (uz +v2)/2]
H = E+p/p,

where 7 is the ratio of specific heats, for air taken to be the constant 1.4.

To produce a numerical method based on (1), the flow domain is divided into quadri-

laterals. On each quadrilateral of the domain, the double integral in (1) is approximated by

the centroid rule and the line integral is approximated by the midpoint rule. For numeri-

cal stability, a dissipation term which is a blend of second and fourth-order differences is

added. This gives the approximation

d

-_(nljwij) + (n. FI,+ /2.j - n-FI,-t/2.j)

q- (n. FI,,j+,/2 - n- Fkj_,/2) + (D_ + Du)wi j : 0,

where Aij is the area of cell (i, j) and n has been redefined to include a factor proportional

to the length of the side.

The iterative method for steady-state problems is based on a time-marching method for

the time-dependent equations (1). After the spatial discretization sketched in the previous

paragraph, the equations form a system of ordinary differential equations

dw

d-T + Hw + Pw = 0, (3)

where H denotes the finite-difference operator corresponding to the differencing of the

spatial derivatives in (I) and P denotes the finite-difference operator corresponding to the

artificial dissipation terms. A general multistage Runge-Kutta-like method for (3) can be
written in the form

w (°) ---- zv,_

for k = 1 to m

w (k) w (°) t k-l, .., (j)= - _j=0 + flkjPw(J))(O_kj I-i "w

Wn+ 1 = w(m).

(4)

This procedure starts from a numerical solution at step n and produces a solution at step n +

1. The par,'uneters are m, the number of stages; t, the time step; and {aaj} and {/3kj},
coefficients chosen so that

k-I k-I

ff_ a_j = _-_fl_j, 1 < k < m. (5)
j=O j=O
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(This last restriction is sufficient to ensure that w,_+! = w,_ if and only if(H + P)w_ = 0,

and hence any numerical steady state is independent of t.)

A convergence acceleration technique sometimes called residual smoothing or implicit

residual averaging is used. This involves a slight modification of (4). In particular, the

update for wCk) is now given by :

k-I

S(w (k) - w (°)) = -t _(o_kiHw (i) + ,SkiPw(J)),
j=O

(6)

where S is the operator S = (I -e_6_,)(I - eu6yu) applied to each component of w

separately (here 8_ is defined by 8x,w_s = wr+l.s - 2w,s + w.-t,s) and e, _> 0, Ey _> 0

are constants. The solution of the linear system Sw = r in (6) involves solving a series of

independent tridiagonal Toeplitz matrices in the x and y directions.

Two other convergence acceleration techniques are used. One is "local time-stepping"

where a different t is chosen for each cell according to a local CFL condition. Another is

enthalpy damping [2] which takes advantage of the fact that the enthalpy is constant along

streamlines [3].

The final acceleration technique to be discussed is the mulfigrid technique, which effects

a substantial improvement in convergence. The multigrid idea is based on using some re-

laxation scheme to smooth the error on a fine grid, then transferring the problem to a coarser

grid and solving the transferred problem. A good approximate solution to the transferred

problem can be obtained cheaply, since the coarse grid has only 1/4 the number of grid

points (assuming two space dimensions) of the fine grid. The solution to the coarse grid

problem is then used to correct the fine grid solution. The coarse grid solution is usually

obtained by the same multigrid algorithm, so the size of the grids on which the problem is

considered rapidly decreases. It is beyond the scope of this paper to consider all the mo=

tivation behind the origination and development of multigrid algorithms; we refer to the

literature ([5], [6]).

In summary, the algorithm under consideration consists of an explicit multistage relax-

ation method with local time-stepping, implicit residual averaging, and multigrid to accel-

erate convergence. The latter two techniques are especially significant when considering

transporting the code to a parallel processing environment.

3 Parallelization of FLO52

Conceptually, converting the sequential FLO52 code to a hypercube version is relatively

simple. Figure 1 shows a sample computational domain mapped onto a hypercube. The

computational domain is an 'O' grid that is logically equivalent to a rectangular grid. The

logical domain is broken into equal sized subdomains which are then assigned to different

processors. Each subdomain has a "boundary layer" that contains values updated by other

processors. Assigrmaents are made using a binary reflected Gray code in two dinaensions,

as shown figure 1.

The code structure in the main body of the computation closely resembles the sequential

version, with the exception of some re-ordering of the computations to decrease commu-

nication overhead. The algorithm is fully explicit except for an implicit residual averaging

scheme. The nested loops in the explicit sections now operate on the local subdomains
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instead of the whole domain. Typically the computation/communicationpattern for the
nestedloops in eachprocessor is asfollows. Eachprocessorupdatespoints in its subdo-
main (applying alocal differencing operator).Theneachprocessorexchangesthe updated
boundary values with the appropriateneighbor. If a boundary correspondsto a physical
boundary,thensomeboundary condition maybe evaluated.

It shouldbenoted that most of the codecorrespondsto alocal 5 or 9point operator,but
the fourth order dissipation operator requiresa larger stencil (utilizing information from
grid points at adistancetwo). This larger stencil resultsin additional communicationsince
information from points on the subdomainboundaryand points adjacentto the boundary
must becommunicatedto the neighbors. Note that if the coarsestgrid during themultigrid
cycle hasa minimum of two points in eachdimensionper processorthe dissipation oper-
ator canget neededvalues from nearestneighborsso, for the explicit part of the code,all
communication is between nearestneighbors.

The implick part of the code involves solving a seriesof tridiagonal matrices. Being .
implicit, most of the operationscannot beperformedwell in parallel. Many experiments
were madewith this element of the code. The experimentscorrespondto implementation
changesaswell aschanging the algorithm. A discussionof this part of the code will be
deferredto theperformancesectionof thepaperwheretheresultsof theseexperimentswill
bepresented.

4 Optimization of Parallel FL052

To quantify the bottlenecks that arise as a result of parallelization, we analyze the main

algorithm modules of the code and describe several modifications to improve parallel effi-

ciency. We first describe our algorithmic subdivisions for the timing analysis.

Modules of the code are grouped into the ten categories described below.

1. Flux Calculations: The H w term in (6).

2. Dissipation: The Pw term in (6).

3. Local Time Step: Compute local time step.

4. Residual Averaging: Solve the tri-diagonal systems of equations in (6).

5. Boundary Conditions

6. Enthalpy Damping .-

7. Time Advance: Combine the results of the above categories to form (6).

8. I/O

9. , 10. Projection and Interpolation: Multigrid operations for grid transfers.

Table I contains the run time, percentage of CPU tinae, and efficiency for each category

rumling on one node and 16 nodes of the iPSC/2 for the initial version of the code. In our

experiments efficiency is defined relative to a base number of processors as follows :

br(b)
eb(p)- pT(p) (7)



categoryknodes 1 % 16 % el(16)

Total

Flux

Dissipation

Time Step

Residual Avg.

Boundary C's

Enthalpy Damp
Advance Soln.

Input/Output

Project

Interpolate

25027 100.0

6241.3 24.9

4779.6 19.1

1044.2 4.1

4233.3 16.9

146.6 0.6

420.1 1.7

3301.8 13.2

147.6 0.6

4006.3 16.0

705.9 2.8

2767 100.0

565.5 20.4

476.9 17.2

71.2 2.6

963.3 34.8

27.1 1.0

27.2 1.0

210.1 7.6

39.2 1.4

323.5 i 1.7

62.5 2.3

.57

.69

.63

.92

.27

.34

.96

.98

.24

.77

.71

Table 1: Run times (sec.) for Initial Version on iPSC/2.

where p is the number of processors whose efficiency we are calculating, b is base number

of processors, and T(n) is the run time on n processors. The case where b equals 1 is the

standard definition of parallel efficiency. Other values of b arise when the problem is too

large to run on a single processor. For these cases a "relative" efficiency is calculated based

on the smallest number of processors needed to run the problem. Unless otherwise stated,

b is equal to 1. For the sake of comparison, all timing results in this section are given in

seconds and obtained by executing with the same input parameters on the iPSC/2. Each run

uses a three level sawtooth multigrid method with one Runge-Kutta pre-relaxation sweep;

30 multigrid iterations are used on each of the two coarser grids to get an initial approxi-

mation on the next finer grid, and 200 iterations are used on the finest grid. The algorithm

is applied to a transonic flow problem with an angle of attack equal to 1.25 degrees and a

Mach number of 0.8. The finest grid in the multigrid procedure is a 256 × 64 mesh.

We can see from table 1, the efficiency is only 57% onthe 16 node system. Additionally,

we expect this efficiency to degrade further as more processors are used. Still, a 57%

efficiency corresponds to a speedup of better than 9 on the 16 node machine. We should note

that the code tests whether messages need to be sent along each dimension so no messages

are sent when the code is running on a single processor. This yields a truer efficiency than

if a processor sends messages to itself.

A detailed inspection of the timings reveals three areas where the poor machine uti-

lization significantly degrades the overall run time. These areas correspond to the flux,

dissipation, and residual averaging routines. We now describe modifications to our origi-

nal implementations of these subelements.

For both the flux and dissipation routines, we rewrote the code to reduce the number

of messages. For the flux routine this was quite simple. In particular, the old routine used

to send 5 separate messages for each boundary of the subdomain. These messages corre-

sponded to the unknowns : density, z momentum, ff momentum, enthalpy, and pressure.

The new version simply packs these values together into one message to be sent and sees an

improvement in efficiency from 69% to 85%. Unfortunately reducing the number of mes-

sages in the dissipation routine required a significant re-ordering of the computations and
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category\nodes 1 % 16 % el(16)

Total

Flux

Dissipation

Time Step

Residual Avg.

Boundary C's

Enthalpy Damp
Time Advance

Input/Output

Project

Interpolate

24393 100.0

6240.0 25.6

4538.0 18.6

1044.0 4.3

3933.5 16.1

146.4 0.6

420.3 1.7

3303.1 13.5

146.3 0.6

3915.9 16.1

705.7 2.9

1725 100.0

439.7 25.5

298.0 17.3

71.2 4.1

316.4 18.3

12.2 0.7

26.5 1.5

207.5 12.0

40.1 2.3

259.4 15.0

55.1 3.2

.88

.85

.95

.91

.78

.67

.99

.99

.22

.94

.79

Table 2: Run times (sec.) for Final Version on iPSC/2.

additional memory. In particular, the older version sends one message for each correspond-

hag cell on a border. The new version sends just one message for each border. In addition

to buffer packing, overlapping of computation and communication was implemented in the

dissipation routine. This is accomplished by sending the shared boundary values to neigh-

bors and then updating the interior of the subdomain. When boundary values arrive from

the neighbors, the borders of the subdomain are updated. Between the buffer packing and

the overlapping of computation and communication, efficiency for the dissipation routines

went from 63% to 95% and the overall efficiency from 57% to 61% on the 16 node system.

We next describe our modifications to the tridiagonal matrix solves. During the tridi-

agonal solves, information travels across the whole computational domain in both the x

and y directions. This has the effect of creating waves of information that pass from left to

right and right to left in the x direction, and then bottom to top and top to bottom in the y

direction. Initially, all interior boundary values were packed into buffers to minimize the

number of messages. This yielded an efficiency of 27% for residual averaging. Processors

on the far side from the start of a wave have to wait until all processors in between have

computed on their whole sub-domain.

By not packing values and by sending a message for every row when moving-in the

x direction and every column when moving in the y direction, the efficiency jumps to

43%. This is because a diagonal wave develops moving across the computational domain

allowing the processors on the far side from the start to do some work before the first

processor has completed all computation on its sub-domain.

Despite the improvements, the tridiagonal solves are still quite costly. In particular,

for large numbers of processors the low efficiency of the tridiagonal solve can seriously

affect the run time of the whole algorithm. Based on this observation, we eliminated the

tridiagonal solves by replacing them with an explicit residual averaging scheme. The role

of the tridiagon_ matrix solve is to smooth the residual. This smoothing is quite critical

to the algorithm's rapid convergence. However, the smoothing can also be accomplished

with ,an explicit local averaging algorithm. One iteration of our new smoothing algorithm

defines the new residual at a point (x, y) by averaging its value with the average of the four
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neighboring points (Jacobi relaxation). We utilized two iterations of this new smoothing

algorithm instead of the tridiagonal solves. Of course we must not only check the run

times using the explicit smoothing, but also the convergence behavior as we have altered

the algorithm. We simply state that the new smoothing algorithm yields a better overall

convergence rate than with the tridiagonal solves on the limited class of problems that

we tried. On a single processor, the new algorithm takes approximately the same time to

execute a single iteration as the tridiagonal scheme. However as more processors are used,

the new smoothing algorithm is faster per iteration than the tridiagonal scheme and residual

averaging efficiency rises from 43% to 78% on 16 processors of the iPSC/2.

Table 2 shows the run times for our final version with all the modifications mentioned

in this section. We should note that input/output which we thought would degrade the

parallel performance, did not. The parallel efficiency for the input/output time is quite poor,

however the percentage of the total run time is still insignificant on the 16 node system. The

main fig-ure to to notice is the overall improvement from the original version shown in table .

1. In particular, the total run time dropped from 2767 seconds to 1725 seconds on the 16

node system. This corresponds to a rise in efficiency from 57% to 88%. Unfortunately,

this implies that it is important to consider the computer architecture when designing and

implementing even the small sub-sections of an algorithm.

5 Machine Performance Comparisons

In this section we compare the performances of the iPSC/2, the NCUBE and one processor

of a Cray X-MP. Our comments in this section are intended to quantify the performance of

these existing machines as well as to lead into the next section which discusses the potential

capabilities of hypercube machines.

The overall machine performance and efficiency is dependent on the number of pro-

cessors and the size of the grids. Thus to quantify the performance, we must study the

execution times obtained with a variety of grid sizes and over a range of processors. Un-

fortunately due to memory limitations on the NCUBE, we are somewhat restricted in the

cases that we consider here. For the most part the grids used for the timings are realistic

and practical for this fluid problem.

We first consider the run times and efficiencies of the Intel iPSC/2 and the NCUBE

systems. Tables 3 and 4 show both the run time and efficiency of the parallel FLO52 code

(exch_ding input/output) for a variety of mesh sizes and number of processors. These ef-

ficiencies are measured with respect to the leftmost entry in each row (i.e. speed up is

measured against the smallest number of processors available for a given problem). U_-

fortunately, the input/output operations on the NCUBE so severely lengthened the total

run time that we excluded them from these tables. The Intel iPSC/2 yields a speedup of

15.0 running from 1 to 16 processors, and the NCUBE yields a speedup of 10.1 running

from 32 to 512 processors on the 256 × 128 grid. The decrease in efficiency for the larger

grids on the NCUBE is actually caused by the input/output stage (even though the times

for the input/output routines are omitted). This is because some processors are waiting in

their computation stage to receive messages from processors that are still performing in-

put/output operations. In general, on the Intel iPSC/2 the efficiency of the FLO52 code is

greater than 85% when there are at least 1024 grid points per processor. We esthnate that



grid\nodes 1 2 4 8 16

128x32 6172 3142 1622 888 516

1.0 .98 .95 .87 .75

256x32 12345 6220 3159 1685 941

1.0 .99 .98 .92 .82

256x64 24353 12246 6180 3196 1704

1.0 .99 .99 .95 .89

256x128 48450 24318 12250 6217 3216

1.0 .996 .989 .97 .94

Table 3: Run times (top row) and efficiencies (bottom row) for FLO52 on iPSC/2 (exclud-

ing input/output).

grid \ nodes 4 8 16 32 64 128 256 512

128x32 4445 2305 1251 691 416

1.0 .96 .89 .80 .67

256x32 4456 2310 1255 694 422

1.0 .96 .89 .80 .66

256x64 4512 2345 1285 710 439

1.0 .96 .88 .79 .64

256x128 4562 2401 1305 741 454

1.0 .95 .87 .77 .63

Table 4: Run times (top row) and efficiencies (bottom row) for FLO52 on NCUBE (ex-

cluding input/output).

9



categories 4 nodes 8 nodes 16nodes e4(16)

Intel NCUBE Intel NCUBE Intel NCUBE Intel NCUBE

Total 1627.5

Flux 414.1

Dissipation 291.5

Time Step 68.0

I/O 18.8

Res. Avg. 271.3

Bound. C's 26.6

Enthalpy 26.2

Time Step 205.7

Project 253.2

Interpolate 52.1

4512.5 892.5 2458.5 518.5 1336.t3

1015.7 232.4 531.1 133.6 295.3

782.0 151.9 399.1 82.1 207.4

157.2 35.6 79.6 20.3 42.1

105.5 15.7 177.5 11.3 105.81

910.1 162.0 477.1 112.0 270.4

65.6 14.5 38.3 7.4 19.13

69.9 13.1 35.0 6.7 17.6

557.1 103.6 279.4 53.3 141.61

687.3 132.4 352.6 72.8 185.2!

162.1 31.3 88.8 19.0 51.61

Table 5:

grid.

.78 .84

.77 .86

.89 .94

.84 .93

.42 .25

.61 .84

.89 .86

.98 .99

.96 .98

.87 .93

.69 .79

Run times and efficiencies using the same number of processors on a 128 × 32

the NCUBE requires about 1/3 as many points per processor as the iPSC/2 to exceed 85%

efficiency. Furthermore, one processor of the Cray X-MP can perform the same calculation

in 169 seconds as compared with 454 seconds on a 512 NCUBE system and 3216 seconds

on a 16 node iPSC/2 (excluding input/output). While neither of these systems outperformed

a Cray X-MP, the NCUBE is capable of computing within a factor of 3 of the Cray for this
code.

It is difficult to compare the performance of the NCUBE and Intel machines as they are

configxtred with different numbers of processors. Table 5 compares the performance of the

two machines with the same number of processors. We see that the Intel (without vector

boards) outperforms the NCUBE when the number of processors is the same by a factor

of 2.8. Based on timing tests not shown here, the Intel processors are approximately 3

times faster computationaUy and 1.7 times faster for node-to-node communication involv-

hag small messages. Even though the NCUBE has slower computation and communication,

it is more efficient than the Intel iPSC/2 with the same number of processors because the

computation to communication ratio is better. _"

It is unfair to conclude on the basis of Table 5 that the IPSC/2 is a faster machine

than the NCUBE. While the computation and communication on the iPSC/2 are faster than

the NCUBE, NCUBE systems are typically configured with more processors than iPSC/2

systems. We omit the detailed timings and simply state that from our results, it takes about

3.3 times more NCUBE processors to achieve the same run time as the Intel iPSC/2.
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6 Timing Model

In this section, we analyze the run time and efficiency of the FLO52 algorithm as a func-

tion of communication speed, computation rate, number of processors, and number of grid

points. A model for the execution time of FLO52 is developed to carry out the analysis.

This model allows us to explore the potential performance of future hypercube systems by

considering not yet realizable machine parameters.

The FLO52 execution time model is created using the Mathematica symbolic manipula-

tion package [16]. For each major subroutine in FLO52, there is a corresponding function

in the Mathematica program. Instead of computing the numerical operators, these func-

tions compute the number of floating point operations associated with the corresponding

subroutine. For the asymptotic analysis, these functions return the maximum number of

operations any processor executes. For the performance modeling, the functions retum the

number of numerical operations averaged over all processors. Values for operation and

communication costs are based on separate timing tests.

We give a simplified expression for a 3 level multigrid algorithm using 30 sawtooth

iterations on the _vo coarsest grid levels and 200 sawtooth iterations on the fine grid.

T(a,/3 N, ops P)'"

ops[6663 + 479636Vf_ + 297036_]

+a[142563 + logz(P)]+ (8)

/3[34328 + 366391 g_ + 3080.21ogz(P)]

where ops is the number of floating point operations, o_ is the starmp cost to send a message,

and/3 is the communication rate. To produce this expression, we assume that the number

of grid points in the z direction is four times the number in the y direction and use N to

denote the total number of grid points. Additionally, the assumption that N > 16P is

made (only for the asymptotic analysis). This avoids the situation where the number of

processors exceeds the number of grid points on the coarsest grid. In this case, there will

be many idle processors when computing on the coarser grids.

Equation (8) reveals a number of interesting aspects about the run time. One important

property of this code is that asymptotically it attains a perfect speedup. Specifically if we

fix P, and let N approach infinity, then T becomes proportional to _-. This implies that the

efficiency approaches one. Equation (9) extracts the basic elements from (8) that govern
the behavior of the execution time:

p.

T(cc, X, ops, P) ,._ cc[dl + dzv/-_T -t- logz(P)] + ops[d3 + d4V/_T -b d5%]. (9)

The di's are constants, and the communication costs (c_ and/3 ) are approximated by one

variable, cc. The _ terms in (9) correspond to operations on the bound,'u-y of the processor
N

sub-domains. The -g term corresponds to computation in the interior and the log term is

produced by the global communication operations necessary for norm calculations. For

modest sizes of P (P < 10000), these global operations do not dominate the overall run

time. Notice that with the exception of the log(P) terms, all occurrences of P and N are

,v This implies that for a modest number of processors the impot-tant quantitytogether as -V-

is the number of grid points per processor.
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Before utilizing the model, we verify its validity by comparing the predicted run times

with those obtained on the NCUBE and Intel iPSC. It is worthwhile mentioning that our ini-

tial comparisons resulted in substantial improvements in the program as the model revealed

inefficiencies in the original coding. Figures 2 and 3 illustrate the close correlation between

the model's predicted time (solid lines) and the actual run times (dots). Additional com-

parisons (not shown here) between the predicted and actual run times of the major FLO52

subroutines lead us to conclude that the model accurately reflects the behavior of the code.

In evaluating the NCUBE and iPSC/2 as supercomputers, it seems appropriate to use

the model to compare the run times with that of a Cray X-ME In particular, we consider

NCUBE and iPSC/2 systems with many processors. Figure 4 plot the predicted run time

for the iPSC/2 as a function of available processors for a 256 × 128 grid. As expected,

the run time decreases when more processors are used. Theoretically, the iPSC/2 with

700 processors and the NCUBE with 1500 processors exceed the performance of a Cray

X-MP. The main reason for this disappointing result is that the efficiencies are extremely .

low with many processors. In the 2000 processor range for the NCUBE, almost all the

time is spent on communication. Perhaps, however, it is not logical to just extrapolate

the number of processors. We can also consider increases in communication speeds and

computation rates. Specifically, what values must the machine parameters (computation

rate, communication speed, and number of processors) take to achieve approximately the

same run time as the Cray X-MP for our 256 × 128 grid problem. Of course, there is a whole

three-dimensional space of parameters that satisfies the above criteria. From this space we

give an example for the iPSC/2 and the NCUBE/ten. A 64 node iPSC/2 can solve the

256 × 128 problem in approximately the same time as one processor of a Cray X-MP if the

communication speeds of the iPSC/2 are twice as fast and its computation rate 5 times faster.

The 512 node NCUBE can also compete with a Cray on this problem if its communication

speeds are 5 times faster and its computation rate is twice as fast. Considering the somewhat

primitive state of these machines, these improvements in computation and communication

are not unreasonable.

7 Summary

Based on our FLO52 experience, it is clear that hypercube machines can supply the high

flop rates necessary for CFD applications. Unfortunately, this performance comes with

considerable programming incofivenience. While some of this is due to the complexity

of distributed memory parallel programming, the primitive environments of the current

machines make this task considerably more difficult. _"

Parallelization of FLO52 (based on domain decomposition) is straight forward. In fact,

the main body of the code closely resembles the serial version with the exception of the

residual averaging. Nevertheless, a substantial effort was required to produce working

implementations. Much of this time was spent debugging, and coding input/output. Addi-

tional time was lost due to peculiarities of the operating systems (less than robust compilers,

frequent crashing of machine, etc.). Still more time had to be spent optimizing the code

for the machine to obtain efficient utilization. Even the conversion from the iPSC to the

NCUBE was time consuming.

While it is difficult to produce ,an efficiently running code on these hypercubes, the

12



overall computing performance is promising. In our experiments, the 16 node iPSC/2 runs

within a factor of 20 of a single processor Cray X-MP and the 512 node NCUBE within

a factor of 3. Additionally, with the help of a timing model, we predict the performance

of future hypercube systems. Specifically, a 64 node iPSC/2 machine with 5 times faster

computation and 2 times faster communication will yield similar performance to a one

processor Cray X-MP. A 512 node NCUBE system with 5 times faster communication and

2 times faster computation will also produce similar performance to the Cray X-MR
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Figure 1" Computational domain mapped to hypercube.
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